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The leading twist transverse momentum dependent parton distribution function h⊥

1T , which is
sometimes called “pretzelosity,” is studied. We review the theoretical properties of this function, and
present bag model predictions. We observe an interesting relation valid in a large class of relativistic
models: The difference between helicity and transversity distributions, which is often said to be a
’measure of relativistic effects’ in nucleon, is nothing but the pretzelosity distribution. Pretzelosity is
chirally odd and can be accessed in combination with the Collins effect in semi-inclusive deep inelastic
scattering, where it gives rise to an azimuthal single spin asymmetry proportional to sin(3φ − φS).
We discuss the preliminary deuteron target data from COMPASS, on that observable and make
predictions for future experiments on various targets at JLab, COMPASS and HERMES.
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I. INTRODUCTION

Processes like semi-inclusive deep-inelastic lepton nucleon scattering (SIDIS), hadron production in e+e− annihi-
lations or the Drell-Yan process [1–16] factorize at leading twist [17–19] allowing to access information on transverse
momentum dependent fragmentation and parton distribution functions (TMDs) [20, 21]. The latter contain novel,
so far unexplored information on the nucleon structure. In order to be sensitive to “intrinsic” transverse parton mo-
menta it is necessary to measure adequate transverse momenta in the final state, for example, in SIDIS the transverse
momenta of produced hadrons with respect to the virtual photon.

The eight leading-twist TMDs fa
1 , f⊥a

1T , ga
1 , ga

1T , ha
1 , h

⊥a
1L , h⊥a

1T , h⊥a
1 [9], and further subleading-twist structures

[22, 23] describe the structure of the nucleon in these reactions. The fragmentation of unpolarized hadrons is described
in terms two fragmentation functions, Da

1 and H⊥a
1 , at leading-twist. In SIDIS (with polarized beams and/or targets,

where necessary) it is possible to access information on the leading twist TMDs by measuring the angular distributions
of produced hadrons. Some data on such processes are available [24–42].

The fragmentation functions and TMDs in SIDIS and other processes were subject to numerous studies in literature
[43–68]. This is true especially for the prominent transversity distribution ha

1 or the ’naively time-reversal-odd’
functions like the Sivers function f⊥a

1T , the Boer-Mulders function h⊥a
1 and the Collins fragmentation function H⊥a

1 .
The so far probably least considered function is the ’pretzelosity’ distribution h⊥a

1T .
The purpose of this note is therefore three-fold. First, we will review what is known about h⊥a

1T . Second, we
will calculate this function in the bag model. Third, we will present estimates for the transverse target single spin
asymmetry proportional to sin(3φ − φS) in SIDIS in which h⊥a

1T enters, and discuss the prospects to measure this
asymmetry in experiments at Jefferson Lab.

II. TMDS AND SIDIS

Hard processes sensitive to parton transverse momenta like SIDIS are described in terms of light-front correlators

φ(x, ~pT )ij =

∫
dz−d2~zT

(2π)3
eipz 〈N(P, S)|ψ̄j(0) {gauge link}ψi(z)|N(P, S)〉

∣
∣
∣
∣
z+=0, p+=xP+

. (1)

We use light-cone coordinates a± = (a0 ± a3)/
√

2. In SIDIS the singled our 3-direction is along the momentum of
the hard virtual photon, and transverse vectors like ~pT are perpendicular to it. The symbolically indicated gauge-link

depends on the process [14–16]. In the nucleon rest frame the polarization vector S = (0, ~ST , SL) with ~S2
T + S2

L = 1.
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The information content of the correlator (1) is summarized by eight leading-twist TMDs [9], that can be projected
out from the correlator (1) as follows

1

2
tr

[

γ+ φ(x, ~pT )

]

= f1 −
εjkpj

TS
k
T

MN
f⊥
1T (2)

1

2
tr

[

γ+γ5 φ(x, ~pT )

]

= SL g1 +
~pT · ~ST

MN
g⊥1T (3)

1

2
tr

[

iσj+γ5 φ(x, ~pT )

]

= Sj
T h1 + SL

pj
T

MN
h⊥1L +

(pj
T p

k
T − 1

2 ~p
2
T δ

jk)Sk
T

M2
N

h⊥1T +
εjkpk

T

MN
h⊥1 , (4)

where the space-indices j, k refer to the plane transverse with respect to the light-cone and ε12 = −ε21 = 1 and zero
else. Integrating out transverse momenta in the correlator (1) leads to the three ’usual’ parton distributions known
from collinear kinematics ja

1 (x) =
∫

d2~pT j
a
1 (x, ~p 2

T ) with j = f, g, h [85, 86]. Dirac-structures other than that in
Eqs. (2, 3, 4) lead to subleading-twist terms [22, 23]. The fragmentation of unpolarized hadrons is described by a
correlator analog to (1) parameterized in terms of two leading-twist fragmentation functions, Da

1 and H⊥a
1 .

The process of SIDIS is sketched in Fig. 1. The cross section differential in the azimuthal angle φh of the produced
hadron, see Fig. 1, (and possibly differential also in other kinematic variables) has the following general decomposition
[7, 69], where the dots indicate power suppressed terms,

dσ

dφh
= FUU + cos(2φh)F

cos(2φh)
UU + SL sin(2φh)F

sin(2φh)
UL + λ

[

SLFLL + ST cos(φh − φS)F
cos(φh−φS)
LT

]

+ ST

[

sin(φh − φS)F
sin(φh−φS)
UT + sin(φh + φS)F

sin(φh+φS)
UT + sin(3φh − φS)F

sin(3φh−φS)
UT

]

+ . . . (5)

In Fweight
XY the first index X = U(L) denotes the unpolarized beam (longitudinally polarized beam with helicity λ).

The second index Y = U(L, T ) denotes the unpolarized target (longitudinally, transversely with respect to the virtual
photon polarized target). The superscript reminds on the kind of angular distribution of the produced hadrons with
no index indicating an isotrop φ-distribution, and φS is the azimuthal angle of the transversely polarized target.

Each structure function arises from a different TMD. The chirally even f ’s and g’s enter the observables in connection
with the unpolarized fragmentation function Da

1 , the chirally odd h’s in connection with the chirally odd Collins
fragmentation function H⊥a

1 . One has

FUU ∝
∑

a

e2a f
a
1 ⊗ Da

1 , F
cos(φh−φS)
LT ∝

∑

a

e2a g
⊥a
1T ⊗ Da

1 (6)

FLL ∝
∑

a

e2a g
a
1 ⊗ Da

1 , F
sin(φh−φS)
UT ∝

∑

a

e2a f
⊥a
1T ⊗ Da

1 (7)

F
cos(2φh)
UU ∝

∑

a

e2a h
⊥a
1 ⊗ H⊥a

1 , F
sin(φh+φS)
UT ∝

∑

a

e2a h
a
1 ⊗ H⊥a

1 (8)

F
sin(2φh)
UL ∝

∑

a

e2a h
⊥a
1L ⊗ H⊥a

1 , F
sin(3φh−φS)
UT ∝

∑

a

e2a h
⊥a
1T ⊗ H⊥a

1 (9)
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FIG. 1: Kinematics of the SIDIS process lN → l′hX and the definitions of azimuthal angles in the lab frame.
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More precisely, TMDs and fragmentation functions enter the respective tree-level expressions in certain convolution
integrals, indicated by ⊗ in (6-9), which entangle transverse parton momenta from TMDs and fragmentation functions.
(Going beyond tree-level description requires introduction of soft factors [18, 19] from which we refrain here.)

In general, such convolution integrals cannot be solved, unless one weights the DIS counts with an adequate power
of transverse hadron momentum. For the sin(3φh − φS) asymmetry that would mean to weight the events with P 3

h⊥.
The resulting model-independent tree-level expression for that structure function is then given in terms of certain
transverse moments of h⊥1T and H⊥

1 [9].
The analysis of such single spin asymmetries (SSA), however, is involved because acceptance effects are difficult

to control. So far only preliminary data on (some different) Ph⊥-weighted SSAs are available [32]. Moreover, the
Ph⊥-weighting obscures the actual size of the effect. We shall therefore consider here the ’unweighted’ SSA

A
sin(3φ−φS)
UT =

F
sin(3φ−φS)

UT

FUU

, (10)

dependence with the known y-dependence removed, i.e. F
sin(3φ−φS)
UT = (1−y)F sin(3φ−φS)

UT and FUU = (1−y+y2/2)FUU ,
such that the SSA depends only on x and z. (The SSA depends, of course, also on Q2. In the parton model this
dependence is weak, logarithmic, and ’hidden’ in the scale dependence of the distribution and fragmentation functions,
which we do not indicate for brevity.)

In this case, however, the integrals convoluting the transverse momenta can only be solved, if one assumes some
model for the transverse momentum dependence. Here we shall assume the Gaussian Ansatz

h⊥a
1T (x, ~p 2

T ) = h⊥a
1T (x)

exp(−~p 2
T /p

2
av)

π p2
av

, H⊥a
1 (z, ~K 2

T ) = H⊥a
1 (z)

exp(− ~K 2
T /K

2
av)

π K2
av

. (11)

This is, of course, a crude approximation. However, besides being convenient [8], this Ansatz is also phenomenologically
useful, provided the transverse hadron momenta are small compared to the relevant hard scale, 〈Ph⊥〉 ≪ Q in SIDIS,
and one is interested in catching the gross features of the effects [52]. A high precision description of pT -effects requires
methods along the QCD-based formalism of [2], see [70] and references therein for examples.

With the Ansatz (11) we obtain for the SSA the following result

A
sin(3φ−φS)
UT (x, z) =

CGauss

∑

a e
2
axh

⊥(1)a
1T (x)H

⊥(1/2)a
1 (z)

∑

a e
a xf1(x)Da

1 (z)
, (12)

which we have written such that the dependence on the Gauss model is ’dumped’ into the factor

CGauss = f(zpav/Kav) with f(a) =
3

(a2/3 + a−2/3)3/2
. (13)

In (12) we have introduced the transverse moments

h
⊥(1)a
1T (x) =

∫

d2~pT
~p 2

T

2M2
N

h⊥a
1T (x, ~p 2

T ) , H
⊥(1/2)a
1 (z) =

∫

d2 ~KT
| ~KT |
2zmh

H⊥a
1 (z, ~K 2

T ) . (14)

Little is known about the Gauss model parameters, pav and Kav. Apart from constraints from positivity, we know
nothing about pav and have only vague constraints on the Gaussian width of the Collins function [58, 59]. It is

therefore gratifying to observe that f(a) in (13) is a slowly varying function of a satisfying 0 ≤ f(a) ≤ 3/(2
√

2). This
means that

0 ≤ CGauss ≤ Cmax =
3

2
√

2
. (15)

For physically reasonable values of the ratio pav/Kav (let us guess, for example, that it coincides within a factor of
two with the corresponding ratio of the unpolarized widths punp/Kunp ≈ 1.4 [55]) one may therefore expect that the
factor CGauss is within 20 % close to its maximum value. In the following, when we will be interested in estimating
the maximal effects for the SSA (12), we will approximate CGauss by Cmax in Eq. (15).
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III. WHAT DO WE KNOW ABOUT h
⊥a
1T ?

Let us summarize briefly, what we already know, or will learn in the next sections, about the pretzelosity distribution.

(1) It is chirally odd.

(2) It has a probabilistic interpretation [8].

(3) At large-x it is predicted to be suppressed by (1 − x)2 compared to fa
1 (x) [65–67].

(4) It is expected to be suppressed also at small x compared to fa
1 .

(5) It must satisfy the positivity condition [68]
∣
∣
∣
∣

~p 2
T

2M2
N

h⊥a
1T (x, ~p 2

T )

∣
∣
∣
∣
≤ 1

2

(

fa
1 (x, ~p 2

T ) − ga
1 (x, ~p 2

T )

)

≤ fa
1 (x, ~p 2

T ) (16)

or, after integrating over transverse momenta:

|h⊥(1)a
1T (x)| ≤ 1

2

(

fa
1 (x) − ga

1 (x)

)

≤ fa
1 (x) . (17)

(6) Adding up (17) and the Soffer inequality |ha
1(x)| ≤ 1

2 (fa
1 + ga

1)(x) [71], we obtain the remarkable bound:

|h⊥(1)a
1T (x)| + |ha

1(x)| ≤ fa
1 (x) . (18)

(7) In the limit of a large number of colors Nc in QCD pretzelosity is predicted, for pT ∼ O(N0
c ) and xNc ∼ O(N0

c ),
to exhibit the following flavor dependence (the same relation holds for antiquarks) [72]

|h⊥(1)u
1 (x) − h

⊥(1)d
1 (x)|

︸ ︷︷ ︸

O(N2
c )

≫ |h⊥(1)u
1 (x) + h

⊥(1)d
1 (x)|

︸ ︷︷ ︸

O(Nc)

(19)

(8) There are estimates from spectator model [73], and bag model, see Sec. IV.

(9) In a large class of models, including the bag and spectator models, pretzelosity is the difference of helicity and
transversity distributions, and in this sense a measure for relativistic effects, see Secs. IV and V.

(10) In some sense it ’measures’ the deviation of the ’nucleon shape’ from a sphere [74].

(11) In simple (spectator-type) models, it has been related to chirally odd generalized parton distributions [75].

(12) It requires the presence of nucleon wave-function components with two units orbital momentum difference, e.g.
s-d interference of quadratic in p-wave component [67].

(13) There is no gluon analog of pretzelosity.

Some comments are in order.
Concerning the point (4): This expectation is based on experience with evolution properties of integrated parton

distributions. The evolution of the chiral-odd ha
1 differs significantly from that of the chiral-even fa

1 or ga
1 . If at some

initial scale ha
1 were as large as fa

1 or ga
1 (or the Soffer bound [71]) in the small-x region, then at higher scales it would

be suppressed [76, 77]. This pattern is expected also for other chirally odd TMDs.
Concerning the point (6): For u-quarks, that usually dominate in the proton in the valence-x region, the bound

(17) is more restrictive than the Soffer bound for transversity, because gu
1 (x) is positive. Thus, positivity gives more

“room” for |hu
1 (x)| compared to |h⊥(1)u

1T (x)| (and vice versa for the d-flavor). But from this observation alone we

cannot draw any conclusion on the relative size of |ha
1(x)| and |h⊥(1)a

1T (x)|, because neither function is a priori “forced”
to saturate its allowed positivity bound. However, there are first indications that hu

1 (x) is large, definitely larger than
1
2 (fu

1 − gu
1 )(x) [57–59]. So one may expect |h⊥(1)u

1T (x)| . hu
1 (x) on the basis of the first indications [57–59].

Concerning the point (7): The same flavor dependence as in Eq. (19) holds for all TMDs in a polarized nucleon.
Notice, that there is also an unintegrated version of (19), see [72].

Concerning the point (13): Actually, in the decomposition of the gluon analog of the correlator (1) a structure

appears that in Ref. [75] has been called h⊥g
1T , which was of notational convenience for that work. (In Ref. [78] it was

given a different name.) This gluon TMD, however, has different properties compared to our quark pretzelosity. For

example, the h⊥g
1T of [75] is ’odd’ under time-reversal while h⊥a

1T with a = q, q̄ is ’even’.
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IV. PRETZELOSITY IN THE BAG MODEL

In the MIT bag model, the quark field has the following general form [79–81],

Ψα(~x, t) =
∑

n>0,κ=±1,m=±1/2

N(nκ){bα(nκm)ψnκjm(~x, t) + d†α(nκm)ψ−n−κjm(~x, t)} , (20)

where b†α and d†α create quark and anti-quark excitations in the bag with the wave functions

ψn,−1, 1
2
m(~x, t) =

1√
4π

(

ij0(
ωn,−1|~x|

R0
)χm

−~σ · x̂ j1(ωn,−1|~x|
R0

)χm

)

e−iωn,−1t/R0 . (21)

For the lowest mode, we have n = 1, κ = −1, and ω1,−1 ≈ 2.04 denoted as ω ≡ ω1,−1 in the following. In the above
equation, ~σ is the 2 × 2 Pauli matrix, χm the Pauli spinor, R0 the bag radius, x̂ = ~x/|~x|, and ji, are spherical Bessel
functions. Taking the Fourier transformation, we have the momentum space wave function for the lowest mode,

ϕm(~k) = i
√

4πNR3
0

(
t0(k)χm

~σ · k̂ t1(k)χm

)

, (22)

where k̂ = ~k/k with k = |~k| and the normalization factor N is,

N =

(
ω3

2R3
0(ω − 1) sin2 ω

)1/2

. (23)

The two functions ti, i = 0, 1 are defined as

ti(k) =

1∫

0

u2duji(ukR0)ji(uω) . (24)

From the above equations, we see that the bag model wave function Eq. (22) contains both S and P wave components.
Especially, t0 represents the S-wave component, whereas t1 represents the P -wave component of the proton wave
functions.

With the above wave functions, we can calculate all the leading order TMD quark distributions. Assuming SU(6)
spin-flavor symmetry of the proton wave function, we have the up-quark and down-quark distributions,

h⊥q
1T (x, k⊥) = Pq h

⊥
1T (x, k⊥), Pu =

4

3
, Pd = −1

3
, (25)

where h⊥1T can be written as,

h⊥1T (x, k⊥) = A

[

−2M2
N t

2
1

k2

]

, A =
16ω4

π2(ω − 1)j20(ω)M2
N

(26)

where ω is the lowest root of the bag eigen-equation as we mentioned above. The momenta kz and k are defined as
kz = xMN −ω/R0, and k =

√

k2
z + k2

⊥. R0 and MN are bag radius and proton mass, respectively. In our calculations,

we fix the dimensionless parameter R0MN = 4ω. Because h⊥1T depends on t21, clearly it is proportional to the squared
of the P -wave [67], and is sensitive to the quark orbital angular momentum in the proton.

In order to study the positivity bounds we have discussed in the last section, we list the unpolarized and polarized
quark distributions in the MIT bag model. We have

f1(x, k⊥) = A

[

t20 + 2t0t1
kz

k
+ t21

]

(27)

g1(x, k⊥) = A

[

t20 + 2t0t1
kz

k
+ t21(

2k2
z

k2
− 1)

]

(28)

h1(x, k⊥) = A

[

t20 + 2t0t1
kz

k
+ t21

k2
z

k2

]

(29)
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where according to the SU(6) spin flavor symmetry

f q
1 (x, k⊥) = Nqf1(x, k⊥) , Nu = 2 , Nd = 1 , (30)

and the polarized TMDs of definite flavor, gq
1 and hq

1, are given by the expressions analog to (25).
From the above results, we read off the relations, for example

f1(x, k⊥) + g1(x, k⊥) = 2h1(x, k⊥) (31)

h1(x, k⊥) − h
⊥(1)
1T (x, k⊥) = f1(x, k⊥) (32)

where h
⊥(1)
1T (x, k⊥) = k2

⊥/(2M
2
N)h⊥1T (x, k⊥). Thus, in the bag model out of the four functions f1, g1, h1, h

⊥
1T only

two are linearly independent.
In QCD the various TMDs are all independent of each other, and describe different aspects of the nucleon structure.

In simple models, however, it is natural to encounter relations among TMDs. Since they are all expressed in terms
of t0 and t1 representing the S and P-wave components of the proton wave function, Eqs. (22, 24), the TMDs cannot
be all linearly independent of each other. The specific form of the relations (31, 32) can be traced back to Melosh
rotations, which relate longitudinal and transverse nucleon polarization states in a Lorentz-invariant way [82]. The
relations (31, 32) arise therefore in some sense from Lorentz invariance properly took into account in a simplified
description of the nucleon.

Considering the flavor factors (25, 30) dictated by SU(6) symmetry, we obtain from (31, 32) the relations

Pq

Nq
f q
1 (x, k⊥) + gq

1(x, k⊥) = 2hq
1(x, k⊥) (33)

hq
1(x, k⊥) − h

⊥(1)q
1T (x, k⊥) =

Pq

Nq
f q
1 (x, k⊥) . (34)

The latter can be rewritten as follows (notice that the signs are such that the first part really remains an equality)

|hq
1(x, k⊥)| + |h⊥(1)q

1T (x, k⊥)| =
|Pq|
Nq

f q
1 (x, k⊥) < f q

1 (x, k⊥) . (35)

Comparing (35) with (18) we see that the inequality (18) is always satisfied in the bag model, and actually never
becomes an equality. In fact, transversity and pretzelosity explore only 2

3 (only 1
3 ) of their allowed positivity bound

for the u-flavor (d-flavor). Also the inequality (16) is satisfied, because the Soffer inequality holds in the bag model,
which follows analogously from (33), cf. also the detailed discussion in [83].

Concerning large-Nc, we recall that in the quark model formulated for a general (odd) number of colors Nc, the
flavor factors (25, 30) are given by Pu = (Nc +5)/6 and Pd = (−Nc +1)/6 while Nu = (Nc +1)/2 and Nd = (Nc−1)/2
[84]. Thus, the bag model results respect large-Nc predictions (19) because the employed SU(6) symmetry does so.
We also see, however, that 1/Nc-corrections are sizeable for Nc = 3.

Since only two out of the 4 functions f1, g1, h1, h
⊥
1T are linearly independent there are numerous relations among

them. The probably most interesting relation results from subtracting the relations (31, 32) from each other. This
yields (since here a common flavor factor, Pq, enters) the result

gq
1(x, k⊥) − hq

1(x, k⊥) = h
⊥(1)q
1T (x, k⊥) . (36)

This is result is remarkable from the point of view of the popular statement ’the difference between transversity and
helicity distributions is a measure for relativistic effects in nucleon’ [86]. Here, in the framework of the bag model, we
can quantify this statement: The difference of helicity and transversity is (a transverse moment of) pretzelosity.

From this discussion we immediately see what happens to h⊥q
1T in the non-relativistic limit: it vanishes. In this

sense, we arrive at the conclusion that the pretzelosity distribution itself is a measure for relativistic effects in nucleon.
Let us turn to the discussion of the numerical results1. Fig. 2 show results for the quantity

h⊥q
1T (x) =

∫

d2~k⊥ h
⊥q
1T (x, k⊥) . (37)

1 The MIT bag gives also rise to antiquark distributions, though to unphysical ones as the f
q̄
1 (x) come out negative, violating positivity.

Nevertheless these contributions are crucial for the normalizations
R

dx f
q
1 (x) = Nq or the momentum sum rule

P

q

R

dx xf
q
1 (x) = 1,

that are satisfied only if one includes the contribution from negative x (where f
q
1 (x) means minus the antiquark-distribution). Moreover,

the TMDs receive non-vanishing support also from |x| > 1, and the sum rules are satisfied only when integrating over the whole x-axis.
It has been discussed in literature how to deal with these caveats, see for example [87]. In this work, we limit ourselves to quark TMDs
at 0 ≤ x ≤ 1 (we do not discuss ’valence distributions’ f

q
1 val(x) = f

q
1 (x)−f

q̄
1 (x)). When discussing sum rules, however, we shall integrate

the TMDs over the whole x-axis.
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Bag model results for scale-dependent quantities refer to a low initial scale Q0 which is understood to be of the order
of a typical hadronic scale, say Q0 = O(MN ), or even lower, see e.g. [88].

The u-quark distribution is negative. Compared to the d-quark distribution, it has opposite sign to and its absolute
value is four times larger — according to (25). The pretzelosity distribution functions have opposite signs compared to

the transversity distribution functions. Interestingly, the h⊥q
1T (x) are larger than the transversity distribution functions

hq
1(x) in the bag model, and also larger than f q

1 (x). However, it has to be noted that this quantity, as defined in

Eq. (37), is not constrained by positivity bounds. The h⊥q
1T (x) reach minima or maxima, depending on the flavor,

around x = (0.2–0.3).

What is constrained by positivity are the transverse moments h
⊥(1)q
1T (x) of the pretzelosity distribution, see

Eqs. (16, 17, 18). Our results for these quantities, which are defined in Eq. (14), are shown in Fig. 3. The transverse
moments of the pretzelosity distributions are smaller than the transversity distributions. For x > 0.1 their absolute
values are always more than a factor 3 smaller than those of hq

1(x). The extrema of the transverse moments are shifted

towards larger x compared to h⊥q
1T (x), and appear around x = (0.3–0.4).
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FIG. 2: The parton distribution function h
⊥q
1T (x) vs. x from the bag model (results obtained here) in comparison to f

q
1 (x) and

h
q
1(x) from the same model. The functions h

⊥q
1T (x) are rather large, even larger than f

q
1 (x). Notice, however, that h

⊥q
1T (x) itself,

as defined in (37), is not constrained by positivity bounds. All results refer to the low scale of the bag model.
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FIG. 3: The transverse moment h
⊥(1)q
1T (x) vs. x from the bag model (results obtained here) in comparison to f

q
1 (x) and h

q
1(x)

from the same model (rescaled by the factor ± 1
3

for better visibility). The functions h
⊥(1)q
1T (x) satisfy the positivity bounds,

Eqs. (17, 18). The results refer to the low scale of the bag model.
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V. PRETZELOSITY IN THE SPECTATOR MODEL OF [73]

The pretzelosity distribution was calculated in the spectator model [73]. Strictly speaking valence quark distribu-
tions were computed there. However, in that model calculation the difference between ’quarks’ and ’valence quarks’
can be disregarded to a good approximation. In the spectator model of Ref. [73] pretzelosity is given by

h⊥q
1T (x, k⊥) =

∑

r=s, a

Lr/q h⊥r
1T (x, k⊥) , Ls/u =

3

2
, La/u =

1

2
, Ls/d = 0 , La/d = 1 (38)

where the sum goes over contributions from a scalar spectator diquark (s), and an axial vector spectator diquark (a).
The other TMDs have the same ’decompositions’ (38), which is dictated by the SU(6) symmetry. The contributions
of the various diquark spectators to pretzelosity, and for comparison, the TMDs f1, g1 and h1 read [73]

f r
1 (x, k⊥) = Jr(x, k⊥)

[

(xMN +m)2 + k2
⊥

]

(39)

gr
1(x, k⊥) = ar Jr(x, k⊥)

[

(xMN +m)2 − k2
⊥

]

(40)

hr
1(x, k⊥) = ar Jr(x, k⊥)

[

(xMN +m)2
]

(41)

h⊥r
1T (x, k⊥) = ar Jr(x, k⊥)

[

−2M2
N

]

(42)

where the ’spin factor’ ar assumes the values as = 1 and aa = − 1
3 , and

Jr(x, k⊥) =
N2(1 − x)2α−1

2(2π)3(k2
⊥ + λ2

r)
2α
, λ2

r = Λ2(1 − x) + xM2
r − x(1 − x)M2

N . (43)

The meaning and the values of the parameters are: spectator masses Ma = 0.8 GeV and Ms = 0.6 GeV, quark mass
m = 0.36 GeV, cutoff Λ = 0.5 GeV, and α = 2. The normalization factor N is such that

∫
dx f r

1 (x) = 1, and for the
nucleon mass the rounded value MN = 0.94 GeV was used [73]. Other choices of parameters are also possible, see [73]
for details. The results refer to a scale as low as the initial scale of the GRV parameterization µ2

0 = 0.23 GeV2 [89],
and possibly even lower [73].

The contributions from the respective diquarks satisfy the relations, for example,

ar f
r
1 (x, k⊥) + gr

1(x, k⊥) = 2hr
1(x, k⊥) (44)

hr
1(x, k⊥) − h

⊥(1)r
1T (x, k⊥) = ar f

r
1 (x, k⊥) (45)

which are the analogs of the bag model relations (31, 32) discussed in Sec. IV. But, since Ma 6= Ms, the relations
(44, 45) in general do not give rise to relations among TMDs for specific flavors. More precisely, one recovers the
relation (34) in the spectator model for d-flavor, since here the scalar quark decouples. For the u-flavor the relation
(34) follows only in the limit Ma → Ms, because in that limit the decompositions (38) coincide with the bag model
SU(6) flavor relations (25, 30). Therefore, although both are based on the SU(6) symmetry, the spectator model is
more general than the bag model with respect to the flavor dependence.

Notice that in spectator models the mass difference between scalar and axial-vector diquarks is responsible for the
∆-nucleon mass splitting whose physical value is reproduced for Ma −Ms = 200 MeV [90]. In the large-Nc limit we
have M∆ −MN = O(N−1

c ), which implies that also Ma −Ms → 0 in that limit. As for Ma = Ms the flavor relations
(25, 30), are recovered, see above, the same discussion applies here as in Sec. IV. Thus, the spectator model respects
the large-Nc relation (19) — formally and practically, although with non-negligible 1/Nc-corrections, see below.

From this discussion we learn an interesting lesson about the model dependence of relations among different (in
QCD independent!) TMDs. Relations that involve unpolarized and polarized TMDs are ’flavor dependent’, see
(33, 34), and valid only in ’flavor-blind’ models like the bag model, see Sec. IV and [83], or constituent quark models,
see [91]. Such relations break down in general in models with non-trivial flavor structure. In fact, the different masses
of scalar and axial-vector diquarks in the spectator model spoil such relations.

What about relations involving polarized TMDs only? If we subtract the relations (44, 45) from each other f r
1 (x, k⊥)

drops out, and since in that model the flavor structure is precisely the same for all polarized TMDs (independently of
the scalar and axial-vector diquark masses), we recover Eq. (36). Thus, the relation (36) among helicity, transversity
and pretzelosity seems to be valid in a larger class of models. We shall come back to this point in Sec. VI.
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Let us now discuss numerical results. Fig. 4 shows h⊥q
1T (x) defined in (37). The u-quark distribution is negative and

(in magnitude) much larger than the positive d-quark distribution. The h⊥q
1T (x) are larger than hq

1(x) in that model,
and also larger than f q

1 (x) (we recall that this quantity is not constrained by positivity).

Fig. 5a shows the transverse moments h
⊥(1)q
1T (x). One can convince oneself that the positivity constraints (17, 18)

are always satisfied in the model of [73] independently of the specific values for the spectator masses. However, here
the flavor structure is more involved, such that it is not possible to see a priori what fraction of the positivity bound
the transverse moment of pretzelosity explores — in contrast to bag model, Eq. (35) — and it is worth to look at this
in more detail. Fig. 5a shows that the transverse moments of pretzelosity never exceed even half of the (17). Also
the positivity condition (18) is satisfied, see Fig. 5b. Noteworthy, pretzelosity and transversity use, especially for the
u-flavor, a large fraction of the room allowed by positivity conditions.

Next we confront the results from the bag model (obtained here, see Sec. IV) and the spectator model of Ref. [73].

There is a good qualitative agreement, the signs and magnitudes of h⊥q
1T (x) and h

⊥(1)q
1T (x) agree, see Fig. 6a and b.

The transverse moments h
⊥(1)q
1T (x) are much smaller than the transversity distributions hq

1(x). With the exception of
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FIG. 4: The parton distribution function h
⊥q
1T (x) vs. x from the spectator model of Ref. [73] in comparison to f

q
1 (x) and h

q
1(x)

from the same model. The functions h
⊥q
1T (x) are rather large, even larger than f

q
1 (x). Notice, however, that h

⊥q
1T (x) itself, as

defined in (37), is not constrained by positivity bounds. All results refer to the low scale of the model [73].
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very small-x they are at least 3 times smaller than hq
1(x), see Fig. 6c.

Let us finally compare the flavor combinations (h
⊥(1)u
1T ± h

⊥(1)d
1T )(x) in Fig. 6d. As we have discussed, above and

in Sec. IV, both models are conceptually in agreement with large-Nc. But in both models, of course, the finite value
Nc = 3 is used. It is therefore of interest to investigate to which extent the models reflect the large-Nc pattern in
Eq. (19). In fact, Fig. 6d shows that the modulus of the (u− d) flavor combination is always larger than that of the
(u + d) flavor combination, as one would expect on the basis of large-Nc arguments in Eq. (19). But the difference
between the magnitudes of the (u ± d) flavor combinations is not pronounced. This is true especially in the bag
model where the ’large’ (u− d) flavor combination is only 5

3 -times larger than the ’small’ (u+ d) flavor combination.

(Recall that this factor is Nc+2
3 , i.e. in fact large for Nc → ∞.) The spectator model reflects more clearly the large-Nc

behavior predicted in Eq. (19) — especially if we recall that these predictions are valid for x ∼ O(1/Nc) [72].
To which extent can one expect models formulated for finite Nc = 3 to respect large-Nc predictions of the kind

(19)? Fig. 6d gives a flavor on that. In nature, large-Nc results are found to hold within a similar accuracy [92].
Interestingly, the Sivers function predicted to exhibit in the large-Nc limit a flavor dependence analog to (19), see
[72], seems to obey large-Nc predictions rather closely [53–57, 60, 61].
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VI. HOW GENERAL IS THE RELATION IN EQ. (36)

In the bag and spectator model the relation (36) is valid not only for quark but also for antiquark distributions.
Hereby one has to take into account that the Dirac-structure in the chirally odd h1 and h⊥1T is C-odd, while it is

C-even for g1. Thus, for antiquarks the relation (36) reads ga
1 (x, k⊥) + ha

1(x, k⊥) = −h⊥(1)a
1T (x, k⊥) with a = ū, d̄.

While strictly speaking in the bag model anti-quark distributions are unphysical, see footnote 1, one obtains in
principle consistent results in the spectator model. In [73] no antiquark distributions were considered, however, this
can be done precisely as sketched in Eqs. (38-43) but with additional parameters for the (four-quark-) spectators,
which must be tuned. The results, however, are analog to (38-43) and satisfy the relation (36) for antiquarks.

So, in the quark models we have discussed the relation (36) holds for both, quark and antiquark TMDs. It will also
be valid in a large class of relativistic models, e.g. the constituent quark models of the kind used in [91], or in the
model of [93] (which remains to be verified by direct calculations). The question that naturally arises is: How general
is the relation (36)?

When discussing this question it is important to observe that Eq. (36) relates chirally even and chirally odd TMDs,
i.e. it relates quark (and anti-quark) TMDs having gluon ’partners’ and such having no gluon counterparts, cf. Sec. III.
It is clear that the evolution properties of these TMDs are different. Therefore, if the relation (36) were valid at some
initial scale, then it certainly would not be valid at a different scale.

These considerations imply, that the relation (36) can be valid only in ’no-gluon models’. This expectation is
supported by the model calculations of Ref. [75]. There (among others) quark and gluon TMDs in a hypothetical
’quark target’ were computed. It was found that g1(x, k⊥) − h1(x, k⊥) 6= 0 (meaning that the model is ’relativistic’)
but difference was not related to pretzelosity. The latter is zero in that model (to the considered order of ’αs’) [75].
This is in line with our expectations: the explicit inclusion of gluon degrees of freedom spoils (36).

Nevertheless, Eq. (36) could turn out to be approximately satisfied, and useful for estimating pretzelosity on the
basis of the helicity and transversity distributions, which we know presently better, or are on a good way to that
[57–59]. At this point, since this relation is found in models without gluons (where we simply could ’neglect’ the
gauge-links), presumably the k⊥-integrated version of (36) is a more reliable prediction of relativistic quark models.

VII. PRELIMINARY COMPASS DATA, AND FUTURE EXPERIMENTS AT JLAB

In the COMPASS experiment the sin(3φ− φS) and other SSAs were measured on a deuteron target [41]. We shall
estimate the deuteron distribution functions by neglecting nuclear binding effects and exploring isospin symmetry as
(analog for ū and d̄, and we neglect strange and heavier quarks):

h
⊥u/D
1T = h

⊥u/p
1T + h

⊥u/n
1T

h
⊥d/D
1T = h

⊥d/p
1T + h

⊥d/n
1T

}

= h⊥u
1T + h⊥d

1T . (46)

Let us denote by N(π+, D) the numerator of the SSA A
sin(3φ−φS)
UT in production of positive pions from the deuteron

target. It is given by (we skip prefactors irrelevant for the qualitative discussion)

N(π+, D) = (h⊥u
1T + h⊥d

1T )(4H⊥fav
1 +H⊥unf

1 ) + (h⊥ū
1T + h⊥d̄

1T )(H⊥fav
1 + 4H⊥unf

1 ) (47)

We estimate the maximum effect for this SSA as follows (and analogously for other pions)

|N(π+, D)| ≤ |h⊥u
1T + h⊥d

1T | · |4H⊥fav
1 +H⊥unf

1 | + |h⊥ū
1T + h⊥d̄

1T | · |H⊥fav
1 + 4H⊥unf

1 | (48)

where (and analogously for antiquarks)

|h⊥(1)u
1T + h

⊥(1)d
1T | ≤ |h⊥(1)u

1T | + |h⊥(1)d
1T | ≤ 1

2
(fu

1 + fd
1 − gu

1 − gd
1) . (49)

Using information on Collins effect [58, 59], the parameterizations [89, 94] for fa
1 (x), ga

1(x), Da
1(z) at a Q2 = 2.5 GeV2,

and assuming that positive (negative) hadrons at COMPASS are mainly positive (negative) pions (this is legitimate
to a good approximation), one obtains the results shown in Fig. 7. We compare the positivity-bound result to the
preliminary data [41].

At larger x > 0.1 the statistics analyzed in [41] is not sufficient to be sensitive to the pretzelosity distribution.
However, below x < 0.1 COMPASS data favor that pretzelosity does not saturate its bound. (This would be in line
with our models. But those refer to low scales, and are strictly speaking not applicable to small-x.)
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FIG. 7: The transverse target SSA A
sin(3φ−φS)
UT, π for deuteron estimated on the basis of the positivity bound vs. preliminary

COMPASS data [41].

This could hint at the following. Either, the chiral-odd pretzelosity is suppressed at small-x with respect to the
chiral-even f1, which is expected, see Sec. III. Or, the u and d-flavors have opposite signs, as predicted in the large-Nc

limit and the models. Or, both. In view of the early stage of art it is too early to draw definite conclusions.
An important observation, however, is that in spite of the small (consistent with zero) effect observed at COMPASS,

pretzelosity does not need to be small in the region x > 0.1, see Fig. 7, where JLab can measure with great precision.
So there is no discouragement due to small COMPASS pretzelosity effect for the planned CLAS measurements!

It remains to be mentioned that HERMES also studied the sin(3φ − φS) azimuthal modulation in the transverse
target experiments. It was quoted that this SSA is zero within error bars, see e.g. [29, 31, 40]. Presumably, an SSA
as large as what we obtain from saturating positivity (see below) would have been seen at HERMES. However, since
no HERMES data were shown on that observable, we cannot draw quantitative conclusions from that.

In order to see how further analyses from HERMES, as well as future experiments at COMPASS and Jefferson Lab
could improve our understanding of pretzelosity, let us estimate the upper bounds for the modulus of the SSA for
charged pion production from various targets. Using the positivity bound (17) we obtain the results in Fig. 8.

The SSAs for charged pions could reach up to ∼ 5%. Even asymmetries reaching half or one third of that size
would be measured, especially in the region of x ∼ (0.1–0.4) in the CLAS experiment. This is shown in Fig. 9, where
we plot the π+ SSA from a proton target in the kinematics of CLAS with 12 GeV beam upgrade. Shown are also
error projections for 2000 hours run time from [96]. Notice that the models predict a negative SSA.

We add that the π0 SSA is small on any target, because the modulus of this SSA is proportional to |H⊥fav
1 +H⊥unf

1 |
which is small (actually zero within error bars), since H⊥unf

1 ≈ −H⊥fav
1 holds within error bars [57–59].
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FIG. 8: The modulus of the transverse target SSA A
sin(3φ−φS)
UT in charged pion production from proton, deuteron, and neutron

targets as function of x. Estimates on the basis of the positivity bound.
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projections are from [96]. The shaded areas indicate the range allowed by positivity bounds. The bag model (obtained here)
and spectator model [73] predict a negative sign for the SSA, i.e. in the lower shaded area.

VIII. CONCLUSIONS

We reviewed and discussed the properties of the pretzelosity distribution function h⊥1T , and presented a study of
this leading-twist, chiral-odd, transverse parton momentum dependent distribution function in the bag model, and
supplemented our findings with a detailed comparison to spectator model results [73].

In these models we observed an interesting relation, which we expect to be valid at low scales in a wide class of
relativistic models. It can be summarized for illustrative purposes by the following assertion:

helicity − transversity = pretzelosity. (50)

That the difference between the helicity and transversity distributions is ’a measure of relativistic effects’ is known
since long ago [86] (and was also recognized in a bag model calculation). However, now we are in a position to
make this statement more precise. This difference is just pretzelosity. Thus, h⊥1T ’measures’ relativistic effects in the
nucleon, and vanishes in the non-relativistic limit where helicity and transversity distributions become equal.

This relation is not supported in models with explicit gluon degrees of freedom [75], and, of course, cannot be true
in QCD where all (eight) transverse momentum dependent parton distribution functions are linearly independent.
Nevertheless, the relation (50), see Eq. (36) for its precise formulation, could turn out to be a useful approximation.
In view of the numerous novel functions involved, any well-motivated approximation is welcome and valuable [64].

Besides being useful for extending our intuition on relativistic spin-orbit effects in nucleon [67, 74], the relation (50)
has also an important consequence on transversity. In the bag and spectator model h⊥u

1T is negative. Since gu
1 (x) is

positive, this implies that hu
1 (x) > gu

1 (x). For the d-flavor signs are reversed, but in any case |hq
1(x)| > |gq

1(x)|. This
is found also in models, e.g. [95].

In the bag model, the negative sign of h⊥u
1T arises because it is proportional to minus the square of the p-wave com-

ponent of the nucleon wave function. Thus, in models with no higher orbital momentum (d-wave, etc.) components,
h⊥u

1T is manifestly negative (h⊥d
1T has opposite sign dictated by SU(6) symmetry, and predicted in large Nc [72]).

This prediction can be tested at JLab. Since the production of positive pions from a proton target is dominated by
the u-flavor, one expects a negative sin(3φ− φS) SSA, see Fig. 9.

Forthcoming analyses and experiments at COMPASS, HERMES and JLab [96–98] will provide valuable information
on the pretzelosity distribution function, and deepen our understanding of the nucleon structure.
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